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Depletion force between two large spheres suspended in a bath of small spheres:
Onset of the Derjaguin limit

M. Oettel
Max-Planck-Institut fu¨r Metallforschung, Heisenbergstrasse 3, 70569 Stuttgart and Institut fu¨r Theoretische und Angewandte Physik,

Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
~Received 22 October 2003; published 29 April 2004!

We analyze the depletion interaction between two hard colloids in a hard-sphere solvent and pay special
attention to the limit of large size ratio between colloids and solvent particles which is governed by the
well-known Derjaguin approximation. For separations between the colloids of less than the diameter of the
solvent particles~defining the depletion region!, the solvent structure between the colloids can be analyzed in
terms of an effective two-dimensional gas. Thereby we find that the Derjaguin limit is approached more slowly
than previously thought. This analysis is in good agreement with simulation data which are available for a
moderate size ratio of 10. Small discrepancies in results from density functional theory~DFT! at this size ratio
become amplified for larger size ratios. Therefore we have improved upon previous DFT techniques by
imposing test-particle consistency which connects DFT to integral equations. However, the improved results
show no convergence towards the Derjaguin limit and thus we conclude that this implementation of DFT
together with previous ones which rely on test-particle insertion become unreliable in predicting the force in
the depletion region for size ratios larger than 10.

DOI: 10.1103/PhysRevE.69.041404 PACS number~s!: 83.80.Hj, 05.20.Jj
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I. INTRODUCTION AND PHYSICAL PROBLEM

The stability of mixtures containing large colloidal pa
ticles in a solvent is determined by the effective interact
between the colloids. This effective interaction is a sum
the direct intercolloidal potential and, by the way of integr
ing out the solvent degrees of freedom, effective interact
terms. In the circumstances where colloidal and solvent
teract mainly through hard-body-like potentials this effect
interaction is largely determined by entropic effects, i.e.,
the free volume which is accessible to the solvent partic
Therefore studies of idealized hard-body models may g
important insights into the behavior of actual experimen
systems, and in view of the large size difference betw
colloids and solvent particles in many natural systems inv
tigations of the limit where the size ratio between colloid a
solvent particles becomes infinite are also of practical imp
tance. On the other hand, the theoretical connection betw
~i! general results of the statistical mechanics for mixtur
~ii ! practical calculational methods such as simulations
density functional theory~DFT! which often are reliable for
smaller size ratios only, and~iii ! macroscopic models de
signed for large size ratios is interesting in itself and in f
has motivated the present study.

Both colloidal and solvent particles are taken to be h
spheres with radiiR2 andR15s/2, respectively. The effec
tive colloidal interaction is purely entropic and arises main
through the effect of a depletion zone between the collo
~for surface-to-surface minimal distancesz,s), which is
inaccessible to the solvent particles.

For large size ratiosa5R2 /R1, the forceFa in the deple-
tion zonez,s between the colloids can be obtained by ju
using bulk and surface thermodynamics. This is the D
jaguin approximation~its derivation is presented in more d
tail below! which states
1539-3755/2004/69~4!/041404~14!/$22.50 69 0414
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Fa~z!

p~R11R2!
5p~z2s!22g` , z<s. ~1!

Here,p is the bulk pressure at densityr of the small spheres
and g` is the surface excess energy per unit area for sm
spheres of densityr at a planar hard wall. In the following
we call the latter a surface tension although for hard sphe
g` is negative and surface tensions are usually associ
with positive quantities. For both quantities quasi-exact
pressions are available@1,2#,

p

r
5

11h1h22h3

~12h!3
, ~2!

g`

r
52

3

4
hS 11

44

35
h2

4

5
h2D

~12h!3
, h5

p

6
r. ~3!

In obtaining these equations we have used reduced units
fined by setting

bS 5
1

kBTD5s51 ~4!

and we will do likewise in all the following considerations
(T is the absolute temperature andkB is Boltzmann’s con-
stant.!

In recent years, progress has been made in calculating
depletion force in hard systems by other theoretical mea
such as simulations@3,4#, integral equations@4#, and density
functional theory~DFT! @5–7#. In a recent paper@8#, Hend-
erson reviews this analysis of depletion forces in hard flu
and points to a serious discrepancy between Derjagu
analysis on the one hand and the various theoret
approaches/molecular dynamics simulations on the o
©2004 The American Physical Society04-1
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FIG. 1. A comparison between existing results for the force between two colloidal particles in the depletion region for the si
a510. Shown are results from molecular dynamics@3#, DFT @5#, the superposition approximation~using density profiles obtained as in Re
@5#!, and the Derjaguin limit for solvent densities:~a! r50.6 and~b! r50.7.
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hand. Also there are some features of the density functio
result which do not fit with the simulations either. The
discrepancies had gone unnoticed partly due to the fact
comparisons were made between depletionpotentialswhich
add a fair amount of uncertainty to the simulation data si
force curves with very few data points had to be integra
@3#. Also the limits inherent in the Derjaguin assumptio
have not been analyzed convincingly such that partial ag
ment versus disagreement with Derjaguin’s result has
been taken seriously. Henderson’s analysis concentrate
the depletion force between hard walls and hard colloids
applies equally well to the force between two colloids.

Before we analyze these discrepancies, we briefly pre
the strategies of the various approaches to obtain the de
tion potential. Let us denote byr(r ;x1 ,x2) the density dis-
tribution of small spheres around two fixed hard sphere
positionsx1 and x2. Then the depletion force on one b
sphere can be obtained by summing over all small sph
the force between a single small sphere and the big sph
By symmetry, the force will be directed along the axis joi
ing the centers of the two big spheres and due to the h
sphere interactions the volume integral reduces to an inte
over the surface of one big sphere. Its magnitude~negative
for attraction, positive for repulsion! is given by

Fa~z!52p~R11R2!2E
21

1

d~cosu!cosur~r ;0,x2!

@ ur u5R11R2 , x25~0,0,2R21z!#. ~5!

In simulations, just this formula is used. The superposit
approximation also uses this formula and additionally
sumes thatr(r ;x1 ,x2) can be obtained by superimposing t
two density distributionsr(r2xi) around one fixed hard
sphere centered atx1 andx2, respectively:

r~r ;x1 ,x2!5
1

r
r~r2x1!r~r2x2!. ~6!

The density distribution around one big sphere could be
termined by, e.g., integral equation methods or by minim
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ing a density functional. When presenting superposition
proximation results, we will use DFT results using th
Rosenfeld functional~as originally given by Ref.@9#! as
these are of superior quality. The DFT method of Ref.@5#
also arrives at the depletion potential~whose derivative gives
the depletion force! by just using the density distribution
around one single big sphere but circumvents the crude
proximation, Eq.~6!, by making use of the potential distri
bution theorem~also known as Widom’s insertion method!.
The method~which we call insertion route DFT! is explained
in Appendix B. On the other hand, the distributio
r(r ;x1 ,x2) could be obtained directly using DFT~in line
with Ref. @5# we call this brute force DFT!. It is numerically
involved and only two studies exist in the literature, both f
size ratios smaller than or equal toa55 @6,7#. Error bars on
the results of Ref.@6# are much too large to arrive at a se
sible conclusion. The much improved results of Ref.@7# in-
dicate no significant deviation between the depletion pot
tials calculated using the insertion route and the brute fo
method, respectively.

For densitiesr.0.5 discrepancies between the abo
mentioned treatments and the simple Derjaguin formula
come apparent as is illustrated in Fig. 1. Fora510 and
solvent sphere densitiesr50.6 and 0.7 we show molecula
dynamics~MD! data @3#, Derjaguin’s result, insertion route
DFT data calculated as in Ref.@5#, and data obtained from
the superposition approximation. The deviation from D
jaguin’s straight line is most obvious nearz51, i.e., near
where just one small sphere fits between the two la
spheres. The MD results seem to follow a straight line wit
slope smaller than the one in Derjaguin’s expression,p, but
with a characteristic rounding off nearz51 which always
overshoots the DFT data~see also Fig. 7 in Ref.@4# for
another simulation!. The DFT results show a flattening o
which is characteristic forr.0.5 anda.10. The same be-
havior is seen in results using bridge diagram corrected
pernetted chain~HNC! integral equations@4#. Finally, the
superposition approximation produces a straight line w
Derjaguin’s slope but with a big offset. Using density dist
butionsr(r2R) from less precise methods~integral equa-
tions with Percus-Yevick and Rogers-Young closure! offset
4-2
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DEPLETION FORCE BETWEEN TWO LARGE SPHERES . . . PHYSICAL REVIEW E 69, 041404 ~2004!
and slope of the straight line are changed considerably@3#
such that these results fitted the MD data quite well. This
the authors of Ref.@3# to the erroneous conclusion that th
superposition approximation is quite successful in predict
r(r ;x1 ,x2). From the present results, it is clear that the
perposition approximation does not constitute a good mo
of the force in the depletion zone.

At first glance one is inclined to blame the discrepanc
on the finiteness ofa. After all, Derjaguin’s result is sup
posed to be valid fora→`. Here the first problem arises
regarding this limit, Henderson gives an argument~which
will be critically examined below! that deviations to Der-
jaguin should only occur forz.121/(4R114R2) (z
.0.955 fora510). This is clearly not the case for all resul
as can be seen in Fig. 1. Moreover the insertion route D
results do not converge to the Derjaguin limit for highera
@5#. The second problem lies in the fact that Rosenfeld’s~or
related! DFT usually gives density distributions around fixe
objects~wall @10#, big spheres@11#, wedge@12#! of such a
high quality that they seem to parametrize MC/MD data a
for higher densities, where MC denotes Monte Carlo. Ho
ever, in the present case systematic discrepancies bet
the MD and the DFT results occur. A tentative first explan
tion why this happens lies in the possibility that inserti
route and brute force DFT give substantially different resu
for a>10 ~remember, there is no apparent difference fora
55 @7#!. A second possibility is that the higher-order corr
lations which are captured only approximately by any D
model become more and more important. In fact, we w
present below a picture for the depletion force which reve
quite subtle packing effects between the colloids wh
emerge for larger values ofa.

There is an interesting consequence from all of this. D
fining the depletion potential by

Wa~z!5E
z

`

Fa~z8!dz8, ~7!

we note that in the Derjaguin approximationWa(0)
,Wa(1) only for r,0.68. Above that density, contact be
tween the two big spheres is only a metastable minim
separated by a rather high potential barrier from the ove
minimum which will be close toz51. So, for higher densi-
ties the colloidal particles would not stick to each other. A
though according to insertion route DFTWa(0)2Wa(1)
also increases with increasingr.0.7, this quantity never
changes its negative sign for physical densities~we checked
this for a<100).

Therefore we can formulate our questions: Does the D
jaguin limit already set in fora'10? If not, why? What is
the source of discrepancy between DFT and MD/MC?
Rosenfeld’s DFT is now being used in studies of solvat
forces for colloidal particles in liquids with interactions oth
than hard sphere@13#, the understanding of its limits for har
spheres is crucial.

The remainder of the paper is organized as follows.
order to have a self-contained presentation, the Derjag
limit for the depletion force is derived via~i! a force and~ii !
energy analysis and~iii ! exact relations from statistical me
04140
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chanics. This section contains nothing new and leans hea
on the presentation in Ref.@8#. To shed light on the onset o
the Derjaguin limit, we will rederive it in a slightly differen
way in the following section and thus show that it is n
valid when the colloids are separated byz'1. This will
define theannular slit approximation. The depletion regime
z,1 is then analyzed in terms of an effective tw
dimensional system of small disks which builds up in t
annular wedge between the colloids. Using scaled part
theory in two dimensions, we derive an expression forFa(z)
which for a→` recovers the Derjaguin expression, althou
more slowly than Henderson anticipated.

For a510, the results of this analysis point to a flaw
the insertion route DFT treatment and show better agreem
with the MD data. Therefore we will examine the insertio
route DFT results closer and improve upon them by imp
ing test-particle consistency~see Appendix B!. The equations
obtained can also be viewed as reference HNC~RHNC! in-
tegral equations with the bridge diagrams calculated from
hard-sphere density functional. Therefore, results from
integral equation closure can be viewed as being akin
insertion route DFT calculations. The quality of the dens
functional is then closely related to the quality of the brid
function approximation.

Using test-particle consistent DFT, we find no conv
gence to Derjaguin’s result fora up to 100 and an increasin
difference to the annular slit approximation~which becomes
more reliable for increasingr anda). With the premise that
the Dejaguin limit is reached in a nonsingular way, we arr
therefore at the conclusion that insertion route DFT~and
likewise integral equations! are unreliable fora.10 since
they miss some of the packing effects of the small sphe
between the large colloids.

In the last section we briefly comment on the possibil
that nonanalytic contributions might prevent a smooth tr
sition to the Derjaguin limit.

II. DERJAGUIN APPROXIMATION

A. Force analysis

The geometrical arrangement of the two colloids is sho
in Fig. 2. The boundary of the exclusion zone for the cent
of the small particles is indicated by the dashed lines, t
the exclusion zone is two~possibly overlapping! spheres of
radius R85R11R2. The depletion force between the tw
large spheres is obtained by summing local pressures
the area of one~exclusion! sphere,

Fa~z!52pR82E
21

1

d~cosu!ploc~u!. ~8!

The Derjaguin approximation consists in replacing the lo
pressure by the solvation force per unit area of a planar
with width l where the width refers to the minimal distanc
between the excluded volumes of the walls:

ploc~u!' f `~ l !. ~9!
4-3
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FIG. 2. ~a! Geometrical definitions for two colloids in the depletion regime. The dashed lines indicate the surfaces of the ex
spheres. Their overlap defines a volumeVs8 and an overlap surface areaAs8 . ~b! Modeling the annular wedge part with widthsl , l 0 by an
annular slit of widthe in which the solvent gas is effectively two dimensional.
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Herel is the horizontal distance between the two~exclusion!
spheres corresponding to angleu, see Fig. 2. For very large
a, this approximation is certainly justified, since locally th
geometry resembles the planar slit. Using

l 52R822x2~12z!, ~10!

cosu5x/R8, ~11!

we transform Eq.~8! into

Fa~z!5pR8E
z21

`

dl f `~ l !. ~12!

The upper limit in this integral over the slit width has be
replaced by infinity since it can be assumed that the solva
force approaches its limiting valuef `( l→`)50 when l is
just a fews, which should be considerably smaller thanR8.
Now the solvation force per unit area is defined by

f `~ l !52
dg~ l !

dl
, ~13!

where g( l ) is the excess grand potential~i.e., bulk grand
potential subtracted! of the system of the two parallel wall
which define the slit. Using the fact thatg(`)52g` , where
g` is the surface tension of a single hard wall in a sea
small spheres, we find

Fa~z!5pR8@g~z21!22g`#. ~14!

If z,1 ~i.e., no single small sphere fits into the slit! the
planar slit surface tension arises from the release of free
ume to the small spheres,g5p(z21). Thus

Fa~z!5pR8@p~z21!22g`#, z<1. ~15!

The depletion force is seen to depend only on the~hard-
sphere! pressurep and surface tensiong` for which we pos-
sess accurate approximations, see Eqs.~2! and ~3!.
04140
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B. Energy analysis

Following Henderson@8# we can arrive at the Derjaguin
approximation also by an analysis of the grand poten
which can be decomposed into a ‘‘volume,’’ a ‘‘surfac
area,’’ and a ‘‘line’’ term according to

V~z!52pVs~z!12pR82E
21

1

d~cosu!g~ l ! ~16!

52pVs~z!1g`As~z!1pR8E
0

`

dl@g~ l !22g`#. ~17!

Here, Vs is the volume available to the small spheres@i.e.,
outside the two~possibly overlapping! exclusion spheres# As
is the corresponding surface area of the two~possibly over-
lapping! exclusion spheres,

Vs~z!5V02Vs85V02
8

3
pR831

p

2
~z21!2

3S R81
z21

6 D ~z,1!, ~18!

As~z!5A02As858pR8212pR8~z21! ~z,1! ~19!

(V0 is the total system volume!, and the last term is the ‘‘line
tension’’ contributionindependentof the length of the over-
lap circle 2py0 and thus independent ofz. Using

Fa~z!52
]V

]z
~20!

and retaining only the leading terms in 1/R8, one arrives at
the Derjaguin result, Eq.~15!.

C. Statistical mechanical analysis

Summarizing Henderson’s analysis, let us consider a fi
big sphere surrounded by a bath of small spheres. T
sphere exerts an external, hard-body potentialVi

ext on small
4-4
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DEPLETION FORCE BETWEEN TWO LARGE SPHERES . . . PHYSICAL REVIEW E 69, 041404 ~2004!
spheres (i 51) and on any other large spheres (i 52). The
work to insert another big sphere at distancez from the first
sphere is given by2c2

(1)(z). Here,c2
(1)(z) is the one-body

correlation function given by

c2
(1)~z!5 ln@r2~z!L2

3#2m̃2~z!, ~21!

m̃2~z!5m22V2
ext~z!. ~22!

In these expressions,L2 is the de Broglie wavelength of th
big spheres andm2 is their chemical potential. For our con
figuration of interest,r2(z) is the one-body density profile o
big spheres on another big sphere in the bath of sm
spheresin the dilute limit (m2→2`).

The first two equations in a hierarchy of functional d
rivatives of the grand potential are

dV

dm̃ i~x!
52r i~x!, ~23!

d2V

dm̃ i~x!dm̃ j~y!
52$r i~x!r j~y!@gi j ~x,y!21#

1r i~x!d (3)~x2y!d i j %. ~24!

Let us assume that the center of the first, fixed sphere de
the origin of the coordinate system, and the coordinates
the center of the second big sphere are given byx
5$x1 ,x2 ,x3%5$0,0,2R21z%. Since the external potentialV2
vanishes forz.0 we find, using the above equations and t
definition of the depletion force, Eq.~20!,

Fa~z!5c2
(1)8~z!5

r28~z!

r2~z!
~z.0! ~25!

5
1

r2~z!
E d3y (

i , j 51,2

d2V

dm̃ i~x!dm̃ j~y!

]m̃ j~y!

]y3
. ~26!

In the dilute limit (r2→0) this expression simplifies to

Fa~z!52E d3y
]V1

ext~y!

]y3
r1~y!@g12~x,y!21#. ~27!

By virtue of the derivative of the external potentialV1
ext ~ex-

erted by the fixed sphere on the small spheres! only the sur-
face of the exclusion sphere~i.e., one of the dashed lines i
Fig. 2! contributes to the integral. Sincer1(y) is the density
profile of small spheres around the fixed sphere, a
r1(y)g12(x,y)5r(y;0,x) is the density profile of smal
spheres around the fixed sphere but with the second sp
fixed at positionx, we recover Eq.~5!:

Fa~z!52pR82E
21

1

d~cosu!cosu@r~$R8,u%;0,x!2r1~R8!#

~28!
04140
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52pR82E
21

cosumin
d~cosu!cosur~$R8,u%;0,x!, ~29!

cosumin5H 12~12z!/~2R8! ~z,1!

1 ~z.1!.
~30!

Although the integral in Eq.~5! extends over the whole sur
face of the big sphere, the contribution of surface eleme
with azimuthal angleu,umin is zero since the density van
ishes there.

To identify the Derjaguin limit it is useful to keep th
second term in the brackets on the right-hand side~rhs! of
Eq. ~28! @writing for the contact density of small spheres a
single large spherers5r1(R8)]:

Fa~z,1!52pR82E
21

cosumin
ada@r~$R8,a%;0,x!2rs#

12pR82rsE
21

cosumin
ada ~31!

52pR82E
21

cosumin
ada@r~$R8,a%;0,x!2rs#

1pR8rs~z21!S 11
z21

4R8
D . ~32!

Changing integration variables froma5cosu to l according
to Eqs. ~10! and ~11! and identifying the upper limit with
infinity, we find

Fa~z,1!5pE
0

`

dl@R82~ l 112z!#@r~$R8,l %;0,x!2rs#

1pR8rs~z21!S 11
z21

4R8
D . ~33!

The ‘‘microscopic’’ Derjaguin approximation consists in se
ting

cosu@r~$R8,l %;0,x!2rs#5S 12
l 112z

2R8
D

3@r~$R8,l %;0,x!2rs#

'rw~ l !2rw , ~34!

whererw( l ) is the contact density at one wall in a planar s
of width l and rw is the contact density at a single plan
wall. From statistical mechanics we furthermore kno
@14,15#

rw~ l !2rw5 f `~ l !52
dg~ l !

dl
, ~35!

rs5p1
2gR8

R8
1

dgR8

dR8
. ~36!
4-5
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FIG. 3. Surface tensiong( l ) and the negative of the coverageG( l ) for planar slits of widthl and two solvent densities:~a! r50.5 and
~b! r50.7, as obtained from minimizing the Rosenfeld functional. The dot-dashed line shows the surface tensiong( l→`)52g` . The
~negative of the! average density refers to the Derjaguin-like approximation of the 2D density in the annular wedge, Eq.~40!.
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Putting the last two equations into Eq.~33! we find the Der-
jaguin result as the leading order inR8, and we can identify
the finite-size correction of first order to it@the surface ten-
sion on the ~exclusion! sphere with radiusR8, gR85g`

1d/R81•••, thus dgR8 /dR8 is negligible to first order in
1/R8]:

Fa~z,1!'Fa
Derjag1pR8

2g`1
z21

4

R8
~z21!. ~37!

Interestingly, the finite-size corrections predict a sma
slope for the force curves ('10% for a510) and a slight
deviation from linearity which affects the curve only forz
→0. We note that the considerations of Ref.@16# ~their
wedge approximation! would modify our finite-size correc
tions by Fa /(pR8)→Fa /(pR8)2g` /R8, i.e., the slope
corrections would be mitigated. In any case, the qualita
behavior forz→1 remains unchanged.

III. ANNULAR SLIT APPROXIMATION
AND DERJAGUIN LIMIT

The microscopic Derjaguin approximation of Eq.~34! as-
serts that—apart from the geometrical factor cosu—all an-
nular wedges that are formed between the two large sph
for z,1 are equivalent, i.e., the contact value of the den
on the spheres can be described by a single function, nam
rw( l ). At first glance, there is a physical difference betwe
these wedges: Atz51 the spheres on one ‘‘side’’ of th
annular wedge can scatter with the spheres on the o
side, as opposed to smaller values ofz. Henderson argue
that for small values ofl, an effectively two-dimensiona
ideal gas of small spheres forms between the two collo
since the limiting three-dimensional densityrw( l→0) stays
finite and therefore an effective two-dimensional~2D! den-
sity r2d' lrw vanishes. Therefore, scattering from one sid
of the wedge to the other should be negligibleunlesszero
separation between the colloids occurs for radial distan
y0,1/2. Sincey0

2'(12z)R8, it follows that the Derjaguin
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approximation should be valid forz,121/(4R8).
Is the concept of a nearly ideal 2D gas really valid in t

annular wedge? For narrow slits with finitel we consider the
small l !s expansion ofrw( l ) @14#:

rw~ l !5
1

r21exp~2mex!1p l
. ~38!

Here, mex is the excess chemical potential of the sm
spheres andr the corresponding density. However, this lim
iting behavior is valid only forvery small l. Rather one
should study the effective 2D density in a slit defined by

r2d
slit~ l !5E

0

l

dl8r~ l 8!5r l 1G~ l !, ~39!

with G( l ) defining the coverage in the slit. A Derjaguin-lik
estimate for the average 2D density in the annular wedge
to a maximal parallel distancel 0 of the exclusion sphere
follows

r2d
av~ l 0!5

1

l 0
E

0

l 0
r2d

slit~ l !5
1

l 0
E

0

l 0
G~ l !dl1

1

2
r l 0 . ~40!

We can gain access to this quantity by using DFT again.
explained earlier, minimizing the Rosenfeld functional in t
presence of an external field gives rather accurate den
distributions. Carrying out the minimization in the presen
of the two hard walls which define the slit gives us the e
plicit density distribution in the slit from which the surfac
tensiong, the coverage, and the average 2D density as fu
tions of l can be calculated. The results for two mediu
densities are shown in Fig. 3. It is seen that the coverage
therefore also the average 2D density quickly reaches
level of 2G` ~twice the coverage on a single planar wal!,
and therefore the 2D gas between the spheres is far f
ideal. We also notice that the surface tensiong( l ) falls
quickly to 2g` and then shows moderate oscillations arou
that value.
4-6



he
g

s
l
s
sl

av

rg

te

o

-

u
e
a

nc
ul
ite

o
u

ap

be
we

of
at
nd

y

-

-
,

ity
can

q.

,

lso

efi-

DEPLETION FORCE BETWEEN TWO LARGE SPHERES . . . PHYSICAL REVIEW E 69, 041404 ~2004!
Now, in order to formulate an alternative derivation of t
Derjaguin limit we replace the last part of the annular wed
with l , l 0 by an annular slit of width 11e where the sphere
can only move perpendicular to thez axis, see the right pane
of Fig. 2. The spheres in the slit can then be viewed a
system of hard disks. The surface tension in this fictitious
is g( l 0) and its surface grand potential is written as

Vsur5g~ l 0!Awed1s~y0!2py01•••, ~41!

whereAwed is the one-sided area of the wedge and we h
introduced a line tension terms(y0) which describes the
interaction at the inner boundary of the wedge. Now for la
R8 we have

y0'AR8~12z!, Awed'A0~y1!1pR8~z21!, ~42!

where the area of a spherical cap isA0'py1
2. Now the

depletion force has three contributions:

Fa~z,1!5S p1
2g`

R8
D dVs

dz
2

dVsur

dz
1E

l 0

`

f `~ l !dl,

~43!

which arise since we have split the original Derjaguin in
gral, Eq. ~12!, according to *z21

`
•••5*z21

0
•••1*0

l 0
•••

1* l 0
`
••• and have incorporated the finite-size correction

Eq. ~37!. Simplifying Eq. ~43! using the geometrical rela
tions in Eq.~42! we find,

Fa~z,1!5pR8F S p1
2g`

R8
D S ~z21!1

~z21!2

4R8
D

2g~ l 0!1
s~y0!

y0
1s8~y0!2@2g`2g~ l 0!#G .

~44!

We have recovered the finite-size corrected Derjaguin res
Eq. ~12!, plus some line tension contribution. In view of th
latter, Henderson’s hypothesis of the equivalence of the
nular wedges is based on the assumption thats(y0)/y0 and
s8(y0) are insignificant fory0.1/2. This is not trivial at all.
Rather, ifs(y0) or s8(y0) go to a finite value asy0→0 we
would expect the Derjaguin limit to fail forz→1.

The effective 2D gas in the annular slit

We can gain access to the line tension functions(y0) by
exploiting the nature of the quasi-2D gas in the wedge. Si
the small spheres can only move in the plane perpendic
to the axis joining the centers of the two colloids, we rewr
the surface grand potential of our fictitious slit as

Vsur→V2d52p2d~r2d!Awed1g2d~r2d;y0!2py0 , ~45!

appropriate for the 2D volume and area grand potential c
tributions of a system of hard disks. Now let us think abo
what is physically happening when the second colloid
proaches the first one at distancesz<1: A circular cavity
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forms in the center of the quasi-2D gas which cannot
reached by the centers of the solvent spheres. Therefore
can express the last equation as

V2d52p2dA0~y1!1mcav~y08!. ~46!

Here, the first term is thez-independent 2D volume term
@A0(y1)'py1

2, see the right panel of Fig. 2#, and we have
introducedmcav(y08), the work needed to create a cavity
radiusy08 . From the reasoning above we would expect th
y085y0. However, in our calculations of surface tensions a
coverages in slits~see Fig. 3! we have seen that for ver
small slit widths (l ,d) r2d

av→0. The limiting distanced can
be estimated from the smalll expansion of the contact den
sity in slits, Eq.~38!:

d~r!'r21exp~2mex!. ~47!

This is indeed a small length compared tos: d(0.5)'4
31022, d(0.7)'131023. But the depleted area in the an
nular wedge up to distancesd must be added to the cavity
and therefore

y08'AR8@~12z!1d#. ~48!

The problem of the insertion energy of an additional cav
was the starting point of scaled particle theory; here we
use the two-dimensional version@17# to obtain

mcav~y08!5H p2dpy08
21g2d2py081e2d ~y08.1/2!

2 ln~12pr2dy08
2! ~y08,1/2!

~49!

p2d5
4

p

h2d

~12h2d!
2

, ~50!

g2d52
2

p

h2d
2

~12h2d!
2

~51!

e2d52h2d

122h2d

~12h2d!
2

2 ln~12h2d! ~52!

S h2d5
p

4
r2dD . ~53!

The contact to the original surface energy of the slit, E
~41!, is made by settingg( l 0)52p2d, thus it follows that
s(y0)→g2d. To obtain numbers, we simply choosel 0 such
that g( l 0)52g` . Using Eq.~3! for the 3D surface tension
we can determiner2d as a function ofr, the 3D density of
small spheres. Remember that physically it would be a
quite sensible to identify the 2D density via Eq.~39!, r2d

5r2d
av . A quick glance at Fig. 3 assures us that the two d

nitions of r2d are quite consistent with each other@18#.
One might be concerned that the validity of Eq.~49! is

limited for intermediate disk sizesy0851, . . . ,2 ~where we
would need it if calculating numbers fora510, say! as
4-7
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scaled particle theory is by construction only an interpolat
between the known analytical behavior ofmcav(y08) for y08
,1/2 on the one side andy08→` on the other side. In view
of lack of appropriate data in the literature we have p
formed a quick MC check for two densitiesr2d50.4 and 0.6,
the results are shown in Appendix A. From these result
follows that scaled particle theory is precise enough for
purposes.

The final result for the depletion force, following from
Eqs. ~43! and ~44! and the considerations of the previo
paragraphs, takes the following form:

Fa~z,1!

pR8
5

1

pR8
S p1

2g`

R8
D dVs

dz
2

1

pR8

dmcav

dz
~54!

5S p1
2g`

R8
D S ~z21!1

~z21!2

4R8
D

15 r2d

12
12z1d

2R8

12pr2dy08
2

~y08,1/2!

S p2d1
g2d

y08
D S 12

12z1d

2R8
D ~y08.1/2!,

~55!

y085A~12z1d!S R82
12z1d

4 D . ~56!

Here, for the sake of completeness, the exact geomet
expression for the cavity radiusy08 is given. The expression
in Eq. ~48! is the leading term in an expansion ofy08 with
respect toR8. Before we perform a quantitative compariso
of Eq. ~55! to available simulation and DFT data, let us a
preciate the difference between the Derjaguin limit and t
result by selectingy0851/2. For large enoughR8, z'1 and
the Derjaguin force is approximately22g` . On the other
hand, for the annular slit approximation most of the terms
Eq. ~55! drop out and using Eqs.~50! and ~51! we find the
force 22g`(12h2d). Thus we see that the Derjaguin forc
is corrected by a multiplicative factor which is notably d
ferent from unity sinceh2d*h3d5p/6r. This is the key
difference to the considerations in Ref.@8# whereh2d was
estimated to be close to zero. Note, however, that the ac
numberof particles in the annular slit is small for modera
size ratiosa, see Eq.~57! below.

IV. RESULTS FROM THE ANNULAR SLIT
APPROXIMATION AND COMPARISON

WITH DFT AND MD

Having obtained a closed expression for the force in
depletion region, Eq.~55!, we can compare results to th
available MD data and to the DFT results. Instead of us
the results from Ref.@5# we apply the bridge functional for
malism of Ref.@19# to obtain results which are ‘‘one tes
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particle consistent.’’ In effect, the equations for the deplet
potential are transformed into RHNC-type equations wh
Rosenfeld’s density functional~or extensions thereof! is the
generating source for the bridge diagrams. For more de
we refer to Appendix B where we have outlined the proc
dure and compared it to the previous DFT results. Summ
rizing the results from Appendix B, the self-consistency f
one test particle gives a relatively small shift of the deplet
force forz,0.6–0.7 which is always upwards. This adds
to a 10–20 % correction upwards for the depletion poten
at contact,Wa(z50). For z.0.7, the results arequantita-
tively almost unchanged. Especially the failure of the previ
ous results to converge to the Derjaguin limit remains un
tered.

For the largest ratioa510 where simulation data ar
available, we show results for the depletion force in Fig.
Values for the force atz51 are compared in Table I. In
general, the agreement between the simulations and ou
nular slit approximation is surprisingly good. The approx
mation follows the trend of the simulation data to produce
maximum in the depletion force forz,1 andr.0.5. A pro-
nounced maximum is absent in the DFT results for the d
sities shown. Despite the better agreement of the annula
approximation with the simulation data, it is hard to te
whether for this size ratioa there is already a serious prob
lem with DFT. First, there are no error bar estimates for
MD data available, and second, the approximation suff
from possible errors due to a finite number of particles in o
idealized annular slit. This number can be estimated by

Ns5r2dAwed'r2dpR8l 0 . ~57!

Indeed, sincel 0'0.2– 0.4~see Fig. 3! Ns,5 for all densities
(a510) According to this estimate, our consideratio
should become increasingly reliable for largerr2d and larger
a.

For larger a, the discrepancy between the annular s
approximation and the DFT results becomes striking.
show this in Fig. 5 for two size ratiosa510 anda5100. As
we have explained, the annular slit approximation can
expected to become more accurate for largera and it has the
correct limiting behavior, so the conclusion would be th
DFT becomes increasingly unreliable fora.10. Although
not shown in the figure, there is already a substantial dif
ence fora520, say. Thus one should regard with extrem
caution the claim in Ref.@5# that insertion route DFT can b
expected to be rather accurate also for size ratios larger
10. A similar claim made about a bridge diagram improv
HNC treatment of the depletion potential~see Ref. @4#!
should also be treated with caution as the HNC results sh
similar defects as the DFT results. Recall that the improv
test-particle consistent DFT results shown here can
viewed as HNC results with bridge diagram corrections s
plied by the density functional and both methods can
formulated in the language of insertion route DFT.

Finally we calculate the quantityWa(0)2Wa(1) ~for a
510) which is roughly the depletion potential difference b
tween colloid contact and the first minimum for medium
4-8
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FIG. 4. The scaled force between two colloidal particles in the depletion regionz,1 for a size ratioa510 and for three solven
densities:~a! r50.5, ~b! r50.6, and~c! r50.7. Comparison between the annular slit approximation@Eq. ~55!#, MD data @3#, and
test-particle consistent DFT based on the White Bear~WB! functional. The small differences between results obtained with the Rose
and the White Bear functional are discussed in Appendix B, see Fig. 7 and the subsequent discussion.
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high densities. The results are collected in Table II. We
that the previous DFT results predict that the potential
colloid contact is minimal for all values ofr. This finding is
not changed by imposing test-particle consistency; only

TABLE I. Results for the scaled depletion force atz51,
Fa /(pR8), for the annular slit approximation, from MD simula
tions @3#, test-particle consistent DFT, and the Derjaguin appro
mation (a510). Note that the annular slit approximation predic
that the value of the scaled force at this point is essentially given
r2d, the effective 2D density.

Fa~z51!

pR8
r r2d d Eq. ~55! MD DFT Derjag.

0.4 0.22 0.18 0.28 0.22 0.22 0.31
0.5 0.34 0.04 0.44 0.41 0.36 0.62
0.6 0.46 8•1023 0.49 0.57 0.51 1.15
0.7 0.59 1•1023 0.60 0.74 0.62 2.05
0.8 0.71 5•1025 0.71 0.64 3.55
0.9 0.81 8•1027 0.81 0.62 6.01
04140
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absolute value of the potential difference is reduced so
what. The annular slit approximation predicts that the ab
lute minimum jumps toz'1 for r'0.83, still far away from
the Derjaguin value 0.68. Fora5100, however, the jump o

-

y

FIG. 5. Scaled depletion force for size ratiosa510 and a
5100: Comparison between the annular slit approximation~gray
curves! and test-particle improved DFT based on the White B
~WB! functional. The solvent density isr50.6. Note that the an-
nular slit approximation approaches the Derjaguin limit qu
slowly, nevertheless the Derjaguin limit is not reached at all by
DFT results.
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the absolute minimum occurs at a density of 0.73, accord
to the annular slit approximation.

V. SUMMARY AND CONCLUSIONS

In this paper, we have analyzed the depletion force
tween hard colloids in a solvent consisting of small ha
spheres. We started from an already previously observed
agreement between simulation data/results from Rosenfe
DFT and the Derjaguin limit. Albeit first derived on pure
phenomenological grounds, equilibrium statistical mechan
strongly supports the validity of the Derjaguin limit for larg
size ratiosa between colloids and solvent spheres. The d
agreement between simulation data/DFT and the Derjag
limit in the depletion zone fora510 could be explained by
an effective approximation which analyzes the structure
the solvent between the two colloids in terms of a~fairly!
dense 2D gas of hard disks. The depletion force near
onset of the depletion zone~i.e., where exactly one solven
sphere fits between the colloids! is mainly determined by the
force to create a disk cavity in the effective 2D gas. Req
ing the Derjaguin limit fora→`, there are no free param
eters for the 2D gas. The agreement with simulation dat
very good even at the relatively small size ratioa510.

For higher size ratiosa.10 no simulation data are avai
able, and existing DFT results showed no convergence
wards the Derjaguin limit. Imposing test-particle consisten
we calculated improved DFT results which however did n
alter their largea behavior. Already fora520 the disagree-
ment of the DFT depletion force with the results of the
fective annular slit approximation becomes pronounced,
pecially in the regionz.0.7s – 0.8s. Also a small, but
systematic deviation from linearity asz→0 remains in the
DFT results for an increasing size ratioa. We conclude that
the limit of reliability of insertion route DFT is reached fo
a510. Through the test-particle consistent calculations
have shown that insertion route DFT and integral equa
approaches are methodologically equivalent to each ot
the single variants differ in their choice for the bridge fun
tional. Similar limits for the reliability can therefore be als
expected for integral equations. Likewise a similar limit w

TABLE II. Depletion potential differenceWa(0)2Wa(1)
5*0

1Fa(z)dz (a510) calculated using insertion route DFT@5#,
test-particle improved DFT based on the White Bear functional,
annular slit approximation, and the Derjaguin approximation.

Wa(0)2Wa(1)
Test-particle Annular slit

r DFT @5# improved DFT approximation Derjaguin

0.4 23.65 23.50 23.15 23.30

0.5 24.32 24.01 23.46 23.35

0.6 24.69 24.16 23.50 22.27

0.7 24.70 23.84 22.89 0.87

0.8 24.39 23.19 21.02 7.79

0.9 23.77 22.38 3.12 21.64
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apply if one treats solvophobic colloids in attractive flui
with repulsive cores using Rosenfeld’s DFT for hard sph
reference systems. To reach larger size ratios, the analys
the annular slit approximation could also be extended to
case.

We have shown that quite subtle packing effects betw
the colloids play a role in determining the depletion force
medium to large size ratios. In light of this it is actual
amazing that insertion route DFT~which explicitly needs
only the density distribution aroundone colloid! captures
most of the effects and only misses the intricate effect of
quasi-2D gas. We emphasize again that the insertion pr
dure is formally exact but we possess only approximate
pressions for the hard sphere density functional whose fu
tional derivative is needed for the insertion procedure
work. The two variants investigated herein, the Rosenf
and the White Bear functional, are—despite being ve
precise—not exact. One deficiency, if not the main, lies
the bulk direct correlation functionsc(n) of ordern>2: they
are zero outside the hard core according to the function
but from simulations and integral equations we know oth
wise. Requiring test particle consistency has fixed this sh
coming for c(2), but for all higher-order (n.2) correlation
functions one should require consistency forn21 fixed test-
particles. Part of the problem forn53 is thus the determi-
nation of the density profile with the two colloids fixed
Therefore, it would be interesting to see how brute for
DFT fares for size ratiosa.10, i.e., whether one could ob
serve the oscillatory packing in the annular wedge direc
and how it is related toc(3).

Throughout the paper we have argued that the Derjag
limit for the depletion force is meaningful. The annular s
approximation, Eq.~55!, predicts the leading correction t
the force}a21/2. Interesting enough, this is a nonanalyt
term but the Derjaguin limit is still reached continuously
the variable 1/a. Since the depletion force is also connect
to an integral over the surface densities, Eq.~5!, this consti-
tutes a hint that the density profile also contains nonanal
contributions in 1/a. In fact, whereas there are good arg
ments that the density profile around hard convex obje
should have an analytic expansion in terms of the curvatu
@20#, such an analyticity requirement does not hold for p
files around nonconvex objects~such as the two-colloid con
figuration in the depletion region!. Consequently, there is th
possibility that for 1/a→0 the surface densities do not rea
the Derjaguin limit of the surface densities in a planar s
configuration, Eq.~38!. Possible singular contributions ca
not be understood with the current theories due to entro
arguments. A finite difference between the surface den
and its Derjaguin limit would also constitute a surprise sin
it would point to small sphere correlations which are mu
larger than the bulk correlation length and allude to a ph
transition such as solidification between the spheres
which there are no hints. Nevertheless the nonanalyticity
density profiles around curved objects is an extremely in
esting subject in itself which is currently being explore
@21#.

e
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FIG. 6. Monte Carlo results for the insertion energy~and its first two derivatives! of an~exclusion! disk of radiusy0 into a system of hard
disks with diameter 1. The thick black lines are the scaled particle predictions, the broken gray lines are raw data. The disk densit~a!
r2d50.4 and~b! r2d50.6.
S
d

ry
us
e-

k
-
o

t
ic

n

tiv
i

nc
u

yt
or

ef.
or-

u-
out

ar-
e

al

cal

the

one
the
loid
t
n

ity

nal
ACKNOWLEDGMENTS

The author wants to thank R. Evans, R. Roth, and
Dietrich for enlightening discussions on the subject an
careful reading of the manuscript.

APPENDIX A: QUALITY OF SCALED PARTICLE
THEORY FOR HARD DISKS IN 2D

To check the reliability of the 2D scaled particle theo
predictions for the insertion energy of a cavity with radi
y0 , wcav(y0), we performed Monte Carlo tests for two m
dium densities,r2d50.4 andr2d50.6. The insertion energy
is given by

wcav~y0!5 ln p0~y0!, ~A1!

wherep0(y0) is the probability to find no center of a dis
within a circle of radiusy0 around an arbitrary point. There
fore we chose for each Monte Carlo move a new, rand
point, around which we checked the latter condition@22#.
The results, obtained for 4000 disks and roughly 108 moves,
are depicted in Fig. 6. The MC results are compared
scaled particle theory, and it is found that its simple pred
tion

wcav~y0!5py0
2p2d12py0g2d ~A2!

with g2d independentof the cavity radius is good except i
the vicinity of y051/2. At this point, exact analysis@17#
demands that the third derivative has a singularity@23#,

d3wcav

dy0
3 ~y0→1/21!}~y021/2!21/2. ~A3!

This leads to a square-root-like cusp in the second deriva
as can be seen in the MC results. Scaled particle theory
nores this cusp which is not too bad an approximation si
the cusp quickly relaxes to a constant which is the press
of the disk system. Apart from this effect of the nonanal
icity of wcav, scaled particle theory is sufficiently precise f
our purposes.
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APPENDIX B: TEST-PARTICLE CONSISTENT DFT

In this section we shortly explain the route taken by R
@5# for obtaining the depletion potential, and introduce c
rections thereto by requiring test-particle consistency. N
merical results for both methods are presented. Through
this sectionb5s51.

Suppose we have a mixture of two hard species with p
ticle radii R1 andR2. Species 2 refers to the colloids and th
mutual interaction potentials are given byui j (r ). We split
the density functional describing the mixture into an ide
gas and an excess part,

F @$r i~r !%#5Fid@$r i~r !%#1Fex@$r i~r !%#. ~B1!

The hierarchy of direct correlation functions is defined as

ci 1 , . . . ,i n
(n) ~x1 , . . . ,xn!52

d (n)Fex

dr i 1
~x1!•••dr i n

~xn!
. ~B2!

Specifically forn51 one can introduce an excess chemi
potential functional,

m i
ex@x;$r i~r !%#52ci

(1)~x!, ~B3!

which reduces to the usual excess chemical potential if
densities are constant,m i

ex@x;$r i(r )5const%#5m i
ex($r i ,0%).

Suppose we have an inhomogeneous situation where
colloid is fixed. The depletion potential is then defined as
difference between the work needed to put another col
particle into the system at positionx on the one hand and a
infinity on the other hand. Using the potential distributio
theorem@24# we find

Wa~x!5 lim
r2→0

„m2
ex@x;$r i~r !%#2m2

ex~$r i ,0%!…, ~B4!

where we have assumed that limuxu→`r1(x)5r1,0. Note that
m2

ex@•••# depends in the required limit only on the dens
distributionr1(r ) of species 1 around the colloid, i.e.,before
the second colloid is inserted. With a given excess functio
4-11
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at hand, the depletion potential is found by obtainingr1(r )
through grand potential minimization,

05
dF

dr i~x!
2m i1Vi~x! ~B5!

→2 ln@r1~x!#5m1
ex@x;$r1~x8!,0%#2m1

ex~$r1,0,0%!1u12~x!,

~B6!

and then inserting this solution into Eq.~B4!.

Test-particle consistency

The depletion potential is the negative potential of me
force between a pair of colloids at infinite dilution. The fo
lowing relation is valid:

Wa~ uxu!52 ln g22~ uxu;$r1,0,0%!2u22~ uxu!, ~B7!

whereg22 is the colloid-colloid distribution function in the
limit of vanishing colloid density. On the one hand, this d
tribution function can be determined via the depletion pot
tial described in the manner above. On the other hand,
excess functional defines the second-order correlation fu
tion ci j

(2) through Eq.~B2! ~for n52) which in turn can be
inverted to givegi j using the Ornstein-Zernike relation:

hi j ~ ur u!2ci j
(2)~ ur u!5(

k
rk,0hik* ck j

(2)~ ur u!, ~B8!

hi j ~ ur u!5gi j ~ ur u!21, ~B9!

hik* ck j
(2)~ ur u!5E d3r 8hik~ ur 8u!ck j

(2)~ ur2r 8u!. ~B10!

In general, both routes will give different results for an a
proximated free-energy functional.

To make both routes consistent with each other, we p
ceed as follows@19#: Consider the equation which relates t
bridge functionbi j to the distribution and direct correlatio
function,

bi j ~ ur u!52 ln gi j ~ ur u!2ui j ~ ur u!1(
k

rk,0hik* ck j
(2)~ ur u!.

~B11!

The various closures of integral equations follow by spec
ing a model for the bridge function, e.g.,bi j (r )50 for the
HNC closure. The bridge function can be generated b
bridge functional which we define to be the functional whi
contains all contributions beyond second order in a den
expansion of the exact free-energy functional around fix
constant bulk densitiesr i ,05r i(r )2Dr i(r ):
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ty
d,

F @$r i~ ur u!%#5Fid@$rk~ ur u!%#1Fex~$rk,0%!

1m i
ex~$rk,0%!E d3rDr i~r !

2
1

2E d3rE d3r 8ci j
(2)~r ,r 8;bulk!

3Dr i~r !Dr j~r 8!1F ex
br@$rk~r !%#. ~B12!

Doubly occurring indices are summed over. To verify th
the such introducedF ex

br indeed generates the bridge fun
tions, we minimize the grand potential according to Eq.~B5!
in the presence of the interparticle potential,Vi5ui j :

dF ex
br

dr i~r !
52 ln

r i~r !

r i ,0
2ui j ~r !1cik

(2)* Drk~r !. ~B13!

Since r i ,0gi j (ur u)5r i(ur u) and r i ,0hi j (ur u)5Dr i(ur u) we
have recovered Eq.~B11! upon the identification

bi j ~r !5
dF ex

br

dr i~r !
uVi5ui j

. ~B14!

Up to now everything was exact but in order to specify
closure explicitly we assert that the true bridge function
can be approximated by the bridge functional of a refere
model for which we possess an explicit form ofFex:

F ex
br@$rk~r !%#'F ex

ref@$rk~r !%#2m i
ex, ref~$rk,0%!

3E d3rDr i~r !1
1

2E d3rE d3r 8

3ci j
(2),ref~r ,r 8;bulk!Dr i~r !Dr j~r 8!.

~B15!

A remark is in order here. Note that Eqs.~B12! and ~B15!
together define a new functional which is now test-parti
consistent, i.e., the inversion of the Ornstein-Zernike relat
gives the same result as an explicit determination of the
tribution functions through the density profiles around t
particles. This consistency holds regardless of the form of
interparticle potential and of how good or bad the choice
the reference system is. Of course, the reference syste
choice is again hard spheres described by Rosenfeld’s f
tional @9# or a recently improved version, the White Be
functional @11#.

In the limit r2→0, relevant for the determination of th
depletion potential, the equations for the distribution fun
tions decouple. Forg11 we have to solve the following equa
tions (r 5ur u):

h11~r !2c11
(2)~r !5r1,0h11* c11

(2)~r !, ~B16!

2 ln g11~r !2u11~r !5r1,0h11* ~c11
(2),ref2c11

(2)!~r !

1„m1
ex,ref@r ;$r1,0g11~r !,0%#

2m1
ex,ref~$r1,0,0%!…. ~B17!
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FIG. 7. ~a! Depletion potential and~b! depletion force between two colloids for a solvent density ofr50.8 and a size ratioa510:
Comparison between test-particle inconsistent and consistent results, using Rosenfeld’s~RF! and the White Bear~WB! functional, respec-
tively.
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As expected, the colloids decouple and we are left with
equations for the one-component system. Employing
White Bear functional, we obtain one-component distrib
tion functions which fit the MC data even better than t
standard Verlet parametrization@25,26#. The input of h11,
c11 is needed to solve the next two equations forg12 ~the
normalized density distribution around one colloid!:

h12~r !2c12
(2)~r !5r1,0h11* c12

(2)~r !, ~B18!

2 ln g12~r !2u12~r !5r1,0h12* ~c11
(2),ref2c11

(2)!~r !

1„m1
ex,ref@r ;$r1,0g12~r !,0%#

2m1
ex,ref~$r1,0,0%!…. ~B19!

Having obtainedh12,c12, the depletion potential is simply
given by

Wa~r !52 ln g22~r !2u22~r !5r1,0h12* ~c12
(2),ref2c12

(2)!~r !

1„m2
ex,ref@r ;$r1,0g12~r !,0%#2m2

ex,ref~$r1,0,0%!….

~B20!

Comparing the expressions for the depletion potential
test-particle inconsistent and consistent DFT, Eqs.~B4! and
~B20!, we see that the main difference is buried in the fi
term on the rhs of Eq.~B20! since r1(r )u inconsistent
'r1,0g12(r )uconsistent.
r.

tte
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Results for the size ratioa510 reveal no huge difference
between the test-particle consistent and inconsistent calc
tions. For distances between the colloidsz,0.6–0.7 the con-
sistent results give a somewhat higher force than the inc
sistent results which adds up to a noticeable upward shif
Wa(z50). Close toz50 ~contact!, all routes show devia-
tions from linearity which is predicted by the Derjagu
analysis. The test-particle consistent White Bear result h
the smallest deviation which could be expected from pre
ous articles@11,12# which report improved contact values fo
density profiles in the vicinity of hard objects. We note th
these deviations from linearity remain as whena is increased
up to 100. Apart from that the differences are minimal, ev
at higher densities. Forr1,050.8, we show the depletion po
tential and force in Fig. 7, calculated with the Rosenfeld a
the White Bear functional.

Due to the accuracy in the one-component case,
choice of reference system has been extended to binary
systems@28#. Again, the agreement with simulation data
extremely good but the size ratio in the binary systems w
well below 10. Only recently the depletion potential betwe
soft colloids in soft fluids has been calculated for size rat
of about 10 using this method@13#. In general, test-particle
consistent DFT fares much better than any other theore
method compared to the simulation data. Nevertheless, in
case of hard colloids in a Lennard-Jones fluid discrepan
to the simulation data occur which show the same footpr
as the deviations we observe here in the case of hard coll
in hard fluids.
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