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Depletion force between two large spheres suspended in a bath of small spheres:
Onset of the Derjaguin limit
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We analyze the depletion interaction between two hard colloids in a hard-sphere solvent and pay special
attention to the limit of large size ratio between colloids and solvent particles which is governed by the
well-known Derjaguin approximation. For separations between the colloids of less than the diameter of the
solvent particlegdefining the depletion regionthe solvent structure between the colloids can be analyzed in
terms of an effective two-dimensional gas. Thereby we find that the Derjaguin limit is approached more slowly
than previously thought. This analysis is in good agreement with simulation data which are available for a
moderate size ratio of 10. Small discrepancies in results from density functional ({#6Fy at this size ratio
become amplified for larger size ratios. Therefore we have improved upon previous DFT techniques by
imposing test-particle consistency which connects DFT to integral equations. However, the improved results
show no convergence towards the Derjaguin limit and thus we conclude that this implementation of DFT
together with previous ones which rely on test-particle insertion become unreliable in predicting the force in
the depletion region for size ratios larger than 10.
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I. INTRODUCTION AND PHYSICAL PROBLEM F.(2)
————=p(z—0)—27v,., Z<o0. 1
SRRy PE0O-2v., =0 ()

The stability of mixtures containing large colloidal par-
ticles in a solvent is determined by the effective interactionHere,p is the bulk pressure at densijtyof the small spheres
between the colloids. This effective interaction is a sum ofand y., is the surface excess energy per unit area for small
the direct intercolloidal potential and, by the way of integrat-spheres of density at a planar hard wall. In the following
ing out the solvent degrees of freedom, effective interactiorwe call the latter a surface tension although for hard spheres
terms. In the circumstances where colloidal and solvent in¥., is negative and surface tensions are usually associated
teract mainly through hard-body-like potentials this effectivewith positive quantities. For both quantities quasi-exact ex-
interaction is largely determined by entropic effects, i.e., bypressions are availabld,?2],
the free volume which is accessible to the solvent particles.

Therefore studies of idealized hard-body models may give P_ 1+ 9+ 7°—7° @)
important insights into the behavior of actual experimental p (1-7)° '

systems, and in view of the large size difference between

colloids and solvent particles in many natural systems inves- 3 4 4

tigations of the limit where the size ratio between colloid and Yoo 4" 1+ 357 57 .

solvent particles becomes infinite are also of practical impor- — == 3 . N= P 3)
tance. On the other hand, the theoretical connection between P (1=m)

(i) general results of the statistical mechanics for mixtures),, obtaining these equations we have used reduced units de-
(ii) practical calculational methods such as simulations angined by setting

density functional theoryDFT) which often are reliable for

smaller size ratios only, andii) macroscopic models de- 1

signed for large size ratios is interesting in itself and in fact B| = KeT =o=1 (4)
has motivated the present study.

Both colloidal and solvent particles are taken to be hardand we will do likewise in all the following considerations.
spheres with radiR, andR,;= /2, respectively. The effec- (T is the absolute temperature akg is Boltzmann’s con-
tive colloidal interaction is purely entropic and arises mainlystant)
through the effect of a depletion zone between the colloids In recent years, progress has been made in calculating the
(for surface-to-surface minimal distances o), which is  depletion force in hard systems by other theoretical means,
inaccessible to the solvent particles. such as simulations3,4], integral equation§4], and density

For large size ratioe=R, /R, the forceF , in the deple- functional theory(DFT) [5-7]. In a recent pap€i8], Hend-
tion zonez< o between the colloids can be obtained by justerson reviews this analysis of depletion forces in hard fluids
using bulk and surface thermodynamics. This is the Derand points to a serious discrepancy between Derjaguin’s
jaguin approximationits derivation is presented in more de- analysis on the one hand and the various theoretical
tail below) which states approaches/molecular dynamics simulations on the other
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FIG. 1. A comparison between existing results for the force between two colloidal particles in the depletion region for the size ratio
a=10. Shown are results from molecular dynanii@k DFT [5], the superposition approximatigasing density profiles obtained as in Ref.
[5]), and the Derjaguin limit for solvent densitigs) p=0.6 and(b) p=0.7.

hand. Also there are some features of the density functionahg a density functional. When presenting superposition ap-
result which do not fit with the simulations either. Theseproximation results, we will use DFT results using the
discrepancies had gone unnoticed partly due to the fact th&osenfeld functionalas originally given by Ref[9]) as
comparisons were made between deplefiotentialswhich  these are of superior quality. The DFT method of H&f.
add a fair amount of uncertainty to the simulation data sinceilso arrives at the depletion potentialhose derivative gives
force curves with very few data points had to be integratedhe depletion forceby just using the density distribution
[3]. Also the limits inherent in the Derjaguin assumption around one single big sphere but circumvents the crude ap-
have not been analyzed convincingly such that partial agregyroximation, Eq.(6), by making use of the potential distri-
ment versus disagreement with Derjaguin’s result has ndgution theorem(also known as Widom’s insertion method
been taken seriously. Henderson’s analysis concentrated dmhe methodwhich we call insertion route DHTis explained
the depletion force between hard walls and hard colloids buiy Appendix B. On the other hand, the distribution
applies equally well to the force between two colloids. p(r;X1,%;) could be obtained directly using DF{in line
Before we analyze these discrepancies, we briefly presenfith Ref.[5] we call this brute force DFT It is numerically
the strategies of the various approaches to obtain the deplgwolved and only two studies exist in the literature, both for
tion potential. Let us denote by(r;x;,X,) the density dis-  sjze ratios smaller than or equaldc=5 [6,7]. Error bars on
tribution of small spheres around two fixed hard spheres ahe results of Ref[6] are much too large to arrive at a sen-
positionsx; and x,. Then the depletion force on one big sible conclusion. The much improved results of R&.in-
sphere can be obtained by summing over all small spheregicate no significant deviation between the depletion poten-
the force between a single small sphere and the big sphergals calculated using the insertion route and the brute force
By symmetry, the force will be directed along the axis join- method, respectively.
ing the centers of the two big spheres and due to the hard For densitiesp>0.5 discrepancies between the above
sphere interactions the volume integral reduces to an integrahentioned treatments and the simple Derjaguin formula be-
over the surface of one big sphere. Its magnitutggative  come apparent as is illustrated in Fig. 1. Fe=10 and

for attraction, positive for repulsigris given by solvent sphere densitigs=0.6 and 0.7 we show molecular
L dynamics(MD) data[3], Derjaguin’s result, insertion route
Fa(z)=2w(R1+R2)2f d(cos6)costp(r:0,x,) DFT data calpylated as in RG{S], and data_obtalned from

-1 the superposition approximation. The deviation from Der-

jaguin’s straight line is most obvious near1, i.e., near
[|r|=Ry+ Ry, X,=(0,0,2R,+2)]. (5)  where just one small sphere fits between the two large
spheres. The MD results seem to follow a straight line with a
In simulations, just this formula is used. The superpositiorslope smaller than the one in Derjaguin’s expresspmpriut
approximation also uses this formula and additionally aswith a characteristic rounding off near=1 which always
sumes thap(r;x;,X;) can be obtained by superimposing the overshoots the DFT datésee also Fig. 7 in Ref4] for
two density distributionsp(r —x;) around one fixed hard another simulation The DFT results show a flattening off
sphere centered & andx,, respectively: which is characteristic fop>0.5 anda>10. The same be-
havior is seen in results using bridge diagram corrected hy-
. _ pernetted chaifHNC) integral equationg4]. Finally, the
p(r,xl,xz)—;p(r—xl)p(r—xz). ©) superposition approximation produces a straight line with
Derjaguin’s slope but with a big offset. Using density distri-
The density distribution around one big sphere could be debutions p(r—R) from less precise methodtegral equa-
termined by, e.g., integral equation methods or by minimiztions with Percus-Yevick and Rogers-Young cloguoéfset
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and slope of the straight line are changed considerg®ly chanics. This section contains nothing new and leans heavily
such that these results fitted the MD data quite well. This ledn the presentation in R€i8]. To shed light on the onset of
the authors of Ref{3] to the erroneous conclusion that the the Derjaguin limit, we will rederive it in a slightly different
superposition approximation is quite successful in predictingvay in the following section and thus show that it is not
p(r;x1,%,). From the present results, it is clear that the su-~alid when the colloids are separated by 1. This will
perposition approximation does not constitute a good modedefine theannular slit approximationThe depletion regime
of the force in the depletion zone. z<1 is then analyzed in terms of an effective two-
At first glance one is inclined to blame the discrepancieddimensional system of small disks which builds up in the
on the finiteness ofr. After all, Derjaguin’s result is sup- annular wedge between the colloids. Using scaled particle
posed to be valid forr—oo. Here the first problem arises: theory in two dimensions, we derive an expressionHpfz)
regarding this limit, Henderson gives an argumémhich  which for «— oo recovers the Derjaguin expression, although
will be critically examined beloy that deviations to Der- more slowly than Henderson anticipated.
jaguin should only occur forz>1-1/(4R;+4R,) (z For =10, the results of this analysis point to a flaw in
>0.955 fore=10). This is clearly not the case for all results the insertion route DFT treatment and show better agreement
as can be seen in Fig. 1. Moreover the insertion route DFTvith the MD data. Therefore we will examine the insertion
results do not converge to the Derjaguin limit for higker route DFT results closer and improve upon them by impos-
[5]. The second problem lies in the fact that Rosenfeldis  ing test-particle consistendgee Appendix B The equations
related DFT usually gives density distributions around fixed obtained can also be viewed as reference HREINC) in-
objects(wall [10], big sphereg11], wedge[12]) of such a tegral equations with the bridge diagrams calculated from the
high quality that they seem to parametrize MC/MD data alschard-sphere density functional. Therefore, results from any
for higher densities, where MC denotes Monte Carlo. How-integral equation closure can be viewed as being akin to
ever, in the present case systematic discrepancies betwemnsertion route DFT calculations. The quality of the density
the MD and the DFT results occur. A tentative first explana-functional is then closely related to the quality of the bridge
tion why this happens lies in the possibility that insertionfunction approximation.
route and brute force DFT give substantially different results Using test-particle consistent DFT, we find no conver-
for =10 (remember, there is no apparent differencedor gence to Derjaguin’s result faf up to 100 and an increasing
=5 [7]). A second possibility is that the higher-order corre- difference to the annular slit approximati@rhich becomes
lations which are captured only approximately by any DFTmore reliable for increasing and ). With the premise that
model become more and more important. In fact, we willthe Dejaguin limit is reached in a nonsingular way, we arrive
present below a picture for the depletion force which revealsherefore at the conclusion that insertion route D@Rd
quite subtle packing effects between the colloids whichlikewise integral equationsare unreliable fora>10 since

emerge for larger values af. they miss some of the packing effects of the small spheres
There is an interesting consequence from all of this. Debetween the large colloids.
fining the depletion potential by In the last section we briefly comment on the possibility

that nonanalytic contributions might prevent a smooth tran-

Wa(z):J Fa(Z,)dZ/, 7) sition to the Derjaguin limit.

z

we note that in the Derjaguin approximatiow,(0) Il. DERJAGUIN APPROXIMATION
<W,(1) only for p<0.68. Above that density, contact be- A. Force analysis

tween the two big spheres is only a metastable minimum

separated by a rather high potential barrier from the overall 1€ geometrical arrangement of the two colloids is shown
minimum which will be close te=1. So, for higher densi- in Fig. 2. The boundary of the exclusion zone for the centers

ties the colloidal particles would not stick to each other. AI—Of the sma}ll particle.s is indica_ted by the dgshed lines, thus
though according to insertion route DFW,(0)—W., (1) the.exclusmn zone is tw(.'possﬂW overlappingspheres of
also increases with increasing>0.7, this quantity never 'adiusR’=R;+R,. The depletion force between the two

changes its negative sign for physical densitige checked large spheres is obta_ined by summing local pressures over
this for a=100). the area of onéexclusion sphere,
Therefore we can formulate our questions: Does the Der- 1
jaguin limit already set in foww~10? If not, why? What is Fa(z)=2wR’2f d(cosO)pip ). 8
the source of discrepancy between DFT and MD/MC? As -1
Rosenfeld’s DFT is now being used in studies of solvation

forces for colloidal particles in liquids with interactions other o Derjaguin approximation consists in replacing the local
than hard spherg3], the understanding of its limits for hard reqgyre by the solvation force per unit area of a planar slit

spheres is crucial. , , with width | where the width refers to the minimal distance
The remainder of the paper is organized as follows. Inyanveen the excluded volumes of the walls:
order to have a self-contained presentation, the Derjaguin

limit for the depletion force is derived vi@) a force andii)
energy analysis andii) exact relations from statistical me- Pioc( )= Tf..(I). (9)
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FIG. 2. (a) Geometrical definitions for two colloids in the depletion regime. The dashed lines indicate the surfaces of the exclusion
spheres. Their overlap defines a volumieand an overlap surface arég . (b) Modeling the annular wedge part with widths: |, by an
annular slit of widthe in which the solvent gas is effectively two dimensional.

Herel is the horizontal distance between the t(eaclusion B. Energy analysis

spheres corresponding to anglesee Fig. 2. For very large  £qjiowing Hendersorig] we can arrive at the Derjaguin
«a, this approximation is certainly J_ustlfu_ad, since locally the approximation also by an analysis of the grand potential
geometry resembles the planar slit. Using which can be decomposed into a “volume,” a “surface

|=2R'— 2x— (1—2), (10) area,” and a “line” term according to

1
coso=xIR, 1y 0@=-pv2)+2mR? [ decosnnl) o)

we transform Eq(8) into "
— V2 + A+ AR [ Al -2y ()

©

Fa(z)=7rR’f dif..(1). (12
-1

z Here, V, is the volume available to the small sphefes.,
outside the twdpossibly overlappingexclusion spherdsAg

The upper limit in this integral over the slit width has been is the corresponding surface area of the tpossibly over-
replaced by infinity since it can be assumed that the solvatiob P Y y

force approaches its limiting value. (I —%«<)=0 whenl is apping exclusion spheres,
just a fewo, which should be considerably smaller thah

8
Now the solvation force per unit area is defined by V(2)=Vo—V.i=Vo— gwR’3+g(z— 1)?
d7(|) z—1
fw(|)=—T, (13 X R'+—6 (z<1), (18
where y(l) is the excess grand potentiéle., bulk grand A(2)=A;—A.=87R'2+27R (z—1) (z<1) (19)

potential subtractedof the system of the two parallel walls

which define the slit. Using the fact tha{=)=2y.., where (v is the total system volumeand the last term is the “line
¥~ IS the surface tension of a single hard wall in a sea oOkensjon” contributionindependendf the length of the over-
small spheres, we find lap circle 2ry, and thus independent af Using

Fo(2)=7R'[y(z=1)=2y.]. (14 a0
Fu@=—— (20
If z<1 (i.e., no single small sphere fits into the slihe

planar slit surface tension arises from the release of free voly g retaining only the leading terms inRL/ one arrives at

ume to the small spheres=p(z—1). Thus the Derjaguin result, E15).

Fo2)=7Rp(z=1)~27.], z<1. (19 C. Statistical mechanical analysis
The depletion force is seen to depend only on thard- Summarizing Henderson’s analysis, let us consider a fixed
spherg pressurep and surface tensiog,, for which we pos-  big sphere surrounded by a bath of small spheres. This
sess accurate approximations, see Egjsand(3). sphere exerts an external, hard-body potentfél on small
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spheresi(=1) and on any other large spherés=@). The €0S Omin
work to insert another big sphere at distazdeom the first =27TR'2J' d(cosd)costp({R’,6};0,x), (29
sphere is given by-c{)(z). Here,ct)(z) is the one-body -
correlation function given by 1-(1-2)/(2R") (z<1)
COSOin= 30
ciH(2)=In[p2(2) A3]— 1a(2), (1) i ’ 1 EEI
~ ox Although the integral in Eq(5) extends over the whole sur-
p2(2)=p2—V3(2). (220 face of the big sphere, the contribution of surface elements
with azimuthal angled< 6,,,i, is zero since the density van-
In these expressions,, is the de Broglie wavelength of the jshes there.
big spheres angk is their chemical potential. For our con-  To identify the Derjaguin limit it is useful to keep the
figuration of interestp,(2) is the one-body density profile of second term in the brackets on the right-hand sitle) of
big spheres on another big sphere in the bath of smalkq. (28) [writing for the contact density of small spheres at a
spheresn the dilute limit(wu,— — ). single large spherp.=p;(R")]:
The first two equations in a hierarchy of functional de-

rivatives of the grand potential are 5 (€08 min
F,(z<1)=2aR’ add p({R’,a};0,x) — ps]
-1

60
= = —Pj y 23 COSUmin
S0 A @3 +2wR'2p5f " da 31)
-1
529 ) ) ) 1 5 €0SOmin
————=——=—wilX)pj ij(X,y)— = ! -1 —
5705 () 1pi(X¥)p;(Y)[gij(xy) —1] 27R Ll ada p({R’,a};0,x) - pe]
+pi(x) 8 (x—y) 8} (24 z—l)
+7R ps(z=1)| 1+ —|. (32

Let us assume that the center of the first, fixed sphere defines
the origin of the coordinate system, and the coordinates
the center of the second big sphere are given xy
={X1,X2,X3}={0,0,2R,+ z}. Since the external potentisl,
vanishes foz>0 we find, using the above equations and the
definition of the depletion force, E20),

0Eihanging integration variables froen=cosé to | according
to Egs.(10) and (11) and identifying the upper limit with
infinity, we find

Fa<z<1>=wf:dl[R'—<l+1—z>1[p<{R',l};o,x>—ps]

. 2(2)
Fa(2)=cfV =222 (20 (25)
paA? + 7R po(z-1)| 14— (33
z— —.
1 520, ami(y) o w
_ 3 Mty
_Pz(Z)f d yi,jzl,z Spi(x)duily) Y3 (26) Ir?ge “microscopic” Derjaguin approximation consists in set-
In the dilute limit (p,—0) this expression simplifies to [+1—7
cosf R",1};0,X)—ps]=| 1—
viy) [p({R".1};0,X) = ps] R
Fa(z):—J dy——pi(VGxy) ~1]. (27) ,
Ys X[p({R',1};0,%) — ps]
By virtue of the derivative of the external potent\&]* (ex- ~pw(l) = pw, (34

erted by the fixed sphere on the small spheogsy the sur-
face of the exclusion sphefee., one of the dashed lines in
Fig. 2) contributes to the integral. Singg(y) is the density
profile of small spheres around the fixed sphere, an

wherep,,(l) is the contact density at one wall in a planar slit
of width | and p,, is the contact density at a single planar
all. From statistical mechanics we furthermore know

p1(¥)912(X,y¥)=p(y;0,x) is the density profile of small 14,19
spheres around the fixed sphere but with the second sphere dy(l)
fixed at positionx, we recover Eq(5): pu(D)—py=TFa()=— % (35)
1
Fa(2)=2wR’2f d(cosd)cost[ p({R’,6};0,x) = p1(R")] 2yp dygre
-1 ps=p+ ——+ —. (36)
(29 R’ dR’
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FIG. 3. Surface tension(l) and the negative of the coverafél) for planar slits of width and two solvent densitie¢a) p=0.5 and
(b) p=0.7, as obtained from minimizing the Rosenfeld functional. The dot-dashed line shows the surface #¢hsior)=2v,,. The
(negative of thgaverage density refers to the Derjaguin-like approximation of the 2D density in the annular wed@0)Eq.

Putting the last two equations into E®3) we find the Der-  approximation should be valid fa<1—1/(4R’).
jaguin result as the leading orderRi, and we can identify Is the concept of a nearly ideal 2D gas really valid in the
the finite-size correction of first order to[ithe surface ten- annular wedge? For narrow slits with finiteve consider the
sion on the(exclusion sphere with radiusR’, ygr=7y.  smalll<o expansion ofp,(l) [14]:
+6/R'+ - -+, thusdyg /dR’ is negligible to first order in
1/R']: 1
7—1 Pull) p lexp(— u)+
2700+ T
F (z<1)~FPeeoy nri— " (z—1). (37) Here, u® is the excess chemical potential of the small
! spheres ang@ the corresponding density. However, this lim-
iting behavior is valid only forvery small I. Rather one
Interestingly, the finite-size corrections predict a smallershould study the effective 2D density in a slit defined by
slope for the force curves~10% for «=10) and a slight
deviation from linearity which affects the curve only far it b
—0. We note that the considerations of REf6] (their Pzd(|)=f0d| p(I")=pl+T(1I), (39
wedge approximationwould modify our finite-size correc-
tions by F“/(Wllq )—F /(7R =y, IR, i€, kt1he slol_pe. with T'(1) defining the coverage in the slit. A Derjaguin-like
EOLreC.t'Or}S Would be “.“'“gatef]- In agy case, the qua It""t'veestimate for the average 2D density in the annular wedge up
ehavior forz— 1 remains unchanged. to a maximal parallel distanclk, of the exclusion spheres
follows

(38

IIl. ANNULAR SLIT APPROXIMATION
AND DERJAGUIN LIMIT 1

1 (! ) I 1
P2l = | “osi= [ T ole. 40

The microscopic Derjaguin approximation of E§4) as-
serts that—apart from the geometrical factor gesall an-
nular wedges that are formed between the two large spher&ye can gain access to this quantity by using DFT again. As
for z<1 are equivalent, i.e., the contact value of the densityexplained earlier, minimizing the Rosenfeld functional in the
on the spheres can be described by a single function, namelyresence of an external field gives rather accurate density
pw(l). At first glance, there is a physical difference betweendistributions. Carrying out the minimization in the presence
these wedges: Az=1 the spheres on one “side” of the of the two hard walls which define the slit gives us the ex-
annular wedge can scatter with the spheres on the othelicit density distribution in the slit from which the surface
side, as opposed to smaller valueszofHenderson argues tensionvy, the coverage, and the average 2D density as func-
that for small values of, an effectively two-dimensional tions of | can be calculated. The results for two medium
ideal gas of small spheres forms between the two colloidslensities are shown in Fig. 3. It is seen that the coverage and
since the limiting three-dimensional denspy,(l —0) stays therefore also the average 2D density quickly reaches the
finite and therefore an effective two-dimensioriaD) den-  level of 2I"., (twice the coverage on a single planar wall
sity pog~1p,, vanishes Therefore, scattering from one side and therefore the 2D gas between the spheres is far from
of the wedge to the other should be negligiblelesszero  ideal. We also notice that the surface tensig() falls
separation between the colloids occurs for radial distanceguickly to 2vy., and then shows moderate oscillations around
Vo<1/2. Sincey(2)~(1—z)R’, it follows that the Derjaguin that value.
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Now, in order to formulate an alternative derivation of the forms in the center of the quasi-2D gas which cannot be
Derjaguin limit we replace the last part of the annular wedgeaeached by the centers of the solvent spheres. Therefore we
with 1<l by an annular slit of width * € where the spheres can express the last equation as
can only move perpendicular to tkexis, see the right panel
of Fig. 2. The spheres in the slit can then be viewed as a Qo6= = P2dPo(Y1) + Hcad Yo)- (46)

system of hard disks. The surface tension in this fictitious slit ) ) )
is (l,) and its surface grand potential is written as Here, the first term is the-independent 2D volume term

[Ao(yl)%wyi, see the right panel of Fig.]2and we have
Qo= Y(lo) Awedt (Vo) 2myo+ - - -, (41)  introduceducaYs), the work needed to create a cavity of
) i radiusy;. From the reasoning above we would expect that
whereA,q4is the one-sided area of the wedge and we hav?/(’):yo. However, in our calculations of surface tensions and

!ntroduqed a I|ne_ tension termx(yo) which describes the coverages in slit§see Fig. 3 we have seen that for very
interaction at the inner boundary of the wedge. Now for large L av o .
R’ we have small slit widths (< 6) p54—0. The limiting distances can

be estimated from the smdllexpansion of the contact den-
Yo~ VR (1=2),  Auer=Aglyp)+7R'(z=1), (42 Sy in slits, Eq.(38)

8(p)=p~texp(— u®). (47)
This is indeed a small length compared ¢o 6(0.5)~4
X102, 5(0.7)~1x10 3. But the depleted area in the an-

ocfm(|)d|, nular wedge up to distancesmust be added to the cavity,
lo and therefore

where the area of a spherical cap Ag~ wyi. Now the
depletion force has three contributions:

29,
J’__
p R’

dVs dQg,
dz dz

F(z<1)=

(43)
: o . . N Yo~ VR'[(1-2)+4]. (48)
which arise since we have split the original Derjaguin inte-

gral, Eqg. (12), according to [, ,--- =f§,l- . +f'0°- - The problem of the insertion energy of an additional cavity
+fl°z. .. and have incorporated the finite-size correction ofwas the starting point of scaled particle theory; here we can

Eq. (37). Simplifying Eg. (43) using the geometrical rela- use the two-dimensional versi¢a7] to obtain

ti in Eq.(42 find, ' ' '
lons in Eq.(42) we fin B P2amY 2+ Yo TY T €24 (Y5> 1/2)

I | S 21 P (z—1)2 #ealY0 7| _in(1 - i) (Yo<1/2)
o =m - -
R/ 4R/ (49)
a(Yo) 4 M2d
— () + +0' (Yo) —[27.— y(lp)]]. P2g=— —— . (50)
y(lo) ' (Yo) = [27-—¥( 0)]] T (1— 7,9)2
44
o _ 2 M 5D
We have recovered the finite-size corrected Derjaguin result, Yodm T (1= 75q)
Eq. (12), plus some line tension contribution. In view of the
latter, Henderson’s hypothesis of the equivalence of the an- 1-2
nular wedges is based on the assumption &hat)/y, and €29= — Uzdﬂ —In(1— 7,9 (52)
o' (y,) are insignificant foly,> 1/2. This is not trivial at all. (1= 129°
Rather, ifo(yg) or o' (yo) go to a finite value agy,—0 we
would expect the Derjaguin limit to fail for— 1. ™
nzd:ZPZd . (53)

The effective 2D gas in the annular slit
Wi . he li ion f . b The contact to the original surface energy of the slit, Eq.
e can gain access to the line tension funcisdyo) by 41), is made by settingy(ly) = — p,q, thus it follows that

tehxplomnﬁ] thi nature of th? quaS|—2!:) ?ﬁs mI the Wedge.dSme(yo)_) v,4. TO obtain numbers, we simply chookgsuch
e e e oo s e a0 2. Using Eq3)for th 30 srface ension,
the surfaceJ gran?:l potential of our fictitious slit a's we can determingyq as a function o, the 3D density of
small spheres. Remember that physically it would be also
quite sensible to identify the 2D density via E®9), psq
=p5y. A quick glance at Fig. 3 assures us that the two defi-
appropriate for the 2D volume and area grand potential conritions of p,4 are quite consistent with each ottj&a8].
tributions of a system of hard disks. Now let us think about One might be concerned that the validity of Ed49) is
what is physically happening when the second colloid apiimited for intermediate disk sizeg,=1, .. .,2 (where we
proaches the first one at distances1: A circular cavity would need it if calculating numbers far=10, say as

Qi Qog= —Pad P20 Awedt Y2d(P2d:Y0)2TY0o, (45)
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scaled particle theory is by construction only an interpolationparticle consistent.” In effect, the equations for the depletion
between the known analytical behavior pf,(y() for y;  potential are transformed into RHNC-type equations where
<1/2 on the one side angf,— on the other side. In view Rosenfeld’s density functionabr extensions therepfs the
of lack of appropriate data in the literature we have pergenerating source for the bridge diagrams. For more details
formed a quick MC check for two densitigs,=0.4 and 0.6, We refer to Appendix B where we have outlined the proce-
the results are shown in Appendix A. From these results iflure and compared it to the previous DFT results. Summa-
follows that scaled particle theory is precise enough for oufizing the results from Appendix B, the self-consistency for
purposes. one test particle gives a relatively small shift of the depletion
The final result for the depletion force, following from force forz<0.6-0.7 which is always upwards. This adds up
Egs. (43) and (44) and the considerations of the previous to @ 10-20% correction upwards for the depletion potential

paragraphs, takes the following form: at contact,W,(z=0). Forz>0.7, the results arguantita-
tively almost unchangedespecially the failure of the previ-
F.(z<1) 1 27, | dVs 1 ducay ous results to converge to the Derjaguin limit remains unal-
— T o T T a5 (54  tered.
7R @R’ R ) dz gR dz

For the largest ratiow=10 where simulation data are
) available, we show results for the depletion force in Fig. 4.
2%)( : (z—1) ) Values for the force az=1 are compared in Table I. In

general, the agreement between the simulations and our an-
nular slit approximation is surprisingly good. The approxi-
1-z+6 mation follows the trend of the simulation data to produce a
RPY=Y (yo<1/2) maximum in the dep_letion forc_e fa<1 andp>0.5. A pro-
Y —T 0 n_o_unced maximum is absent in the DFT results for the deni
n 1-7podys sities shown. Despite the better agreement of the annular slit
approximation with the simulation data, it is hard to tell

Yaq 1—7+8 whether for this size ratie there is already a serious prob-
Pogt — || 1— - (yo>1/2), lem with DFT. First, there are no error bar estimates for the
\ Yo 2R MD data available, and second, the approximation suffers

(55)  from possible errors due to a finite number of particles in our
idealized annular slit. This number can be estimated by

yo= \/(1—2+5)(R’—1_i+5 (56)

Here, for the sake of completeness, the exact geometrical
expression for the cavity radiug, is given. The expression Indeed, sincé,~0.2—0.4(see Fig. 3Ns<5 for all densities
in Eq. (49) is the leading term in an expansion wf with («=10) According to this estimate, our considerations
respect taR’. Before we perform a quantitative comparison should become increasingly reliable for larggy and larger
of Eq. (55) to available simulation and DFT data, let us ap- @.
preciate the difference between the Derjaguin limit and this For larger «, the discrepancy between the annular slit
result by selecting/y=1/2. For large enougR’, z~1 and approximation and the DFT results becomes striking. We
the Derjaguin force is approximatehly2+y... On the other show this in Fig. 5 for two size ratiag=10 anda=100. As
hand, for the annular slit approximation most of the terms inve have explained, the annular slit approximation can be
Eq. (55) drop out and using Eq$50) and (51) we find the — expected to become more accurate for lagend it has the
force —2y..(1— 7,4). Thus we see that the Derjaguin force correct limiting behavior, so the conclusion would be that
is corrected by a multiplicative factor which is notably dif- DFT becomes increasingly unreliable far>10. Although
ferent from unity sincez,4=734=7/6p. This is the key not shown in the figure, there is already a substantial differ-
difference to the considerations in R¢&] where 7,4 was  €nce fora=20, say. Thus one should regard with extreme
estimated to be close to zero. Note, however, that the actu§pution the claim in Ref5] that insertion route DFT can be
numberof particles in the annular slit is small for moderate €xpected to be rather accurate also for size ratios larger than
size ratiosa, see Eq(57) below. 10. A similar claim made about a bridge diagram improved
HNC treatment of the depletion potentiégdee Ref.[4])
should also be treated with caution as the HNC results show
similar defects as the DFT results. Recall that the improved,
test-particle consistent DFT results shown here can be
viewed as HNC results with bridge diagram corrections sup-
Having obtained a closed expression for the force in theplied by the density functional and both methods can be
depletion region, Eq(55), we can compare results to the formulated in the language of insertion route DFT.
available MD data and to the DFT results. Instead of using Finally we calculate the quantity/,(0)—W,(1) (for «
the results from Refl5] we apply the bridge functional for- =10) which is roughly the depletion potential difference be-
malism of Ref.[19] to obtain results which are “one test- tween colloid contact and the first minimum for medium to

Ns= p2dAwed™ p24mR . (57

IV. RESULTS FROM THE ANNULAR SLIT
APPROXIMATION AND COMPARISON
WITH DFT AND MD
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FIG. 4. The scaled force between two colloidal particles in the depletion regidh for a size ratioa=10 and for three solvent
densities:(a) p=0.5, (b) p=0.6, and(c) p=0.7. Comparison between the annular slit approximafigg. (55)], MD data [3], and
test-particle consistent DFT based on the White B¥&B) functional. The small differences between results obtained with the Rosenfeld

and the White Bear functional are discussed in Appendix B, see Fig. 7 and the subsequent di

scussion.

high densities. The results are collected in Table Il. We seabsolute value of the potential difference is reduced some-
that the previous DFT results predict that the potential atvhat. The annular slit approximation predicts that the abso-

colloid contact is minimal for all values g@f. This finding is

lute minimum jumps tez~1 for p~0.83, still far away from

not changed by imposing test-particle consistency; only thehe Derjaguin value 0.68. Fer= 100, however, the jump of

1A= Derj.aguih L g
. — o =10, DFT (WB) ST
TABLE |. Results for the scaled depletion force at1, 1 100 o
F./(7R"), for the annular slit approximation, from MD simula- o — o=10, annularslit) - 7
tions [3], test-particle consistent DFT, and the Derjaguin approxi- ﬁ 0.5} = 100 /’,/ﬁ -
mation (@=10). Note that the annular slit approximation predicts g )__:.;;"///
that the value of the scaled force at this point is essentially given by ©° V/
pad, the effective 2D density. " '/;,/
P
F.(z=1) >
p Pad 5 Eq. (55) MD DFET Derjag. 04 05 06 0.72/00.8 0.9 1 1.1
04 022 0.18 0.28 022 022 0.31 FIG. 5. Scaled depletion force for size ratieas=10 and «
05 0.34 0.04 0.44 0.41  0.36 0.62 =100: Comparison between the annular slit approximatgnay
0.6 046 810° 0.49 057 051 1.15 curves and test-particle improved DFT based on the White Bear
07 059 1103 0.60 0.74 0.62 2.05 (WB) functional. The solvent density jg=0.6. Note that the an-
08 071 510° 0.71 0.64 3.55 nular slit approximation approaches the Derjaguin limit quite
09 081 8107 0.81 0.62 6.01 slowly, nevertheless the Derjaguin limit is not reached at all by the

DFT results.
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TABLE 1l. Depletion potential differenceW,(0)—W,(1)  apply if one treats solvophobic colloids in attractive fluids
=JoF (2)dz («=10) calculated using insertion route DFS],  with repulsive cores using Rosenfeld’s DFT for hard sphere
test-particle improved DFT based on the White Bear functional, thgeference systems. To reach larger size ratios, the analysis of
annular slit approximation, and the Derjaguin approximation.  the annular slit approximation could also be extended to this
case.

We have shown that quite subtle packing effects between
the colloids play a role in determining the depletion force for
medium to large size ratios. In light of this it is actually
04 —365 350 ~315 ~330 amazing that _inser_tior_w rqute DFwhich exp_licitly needs
only the density distribution aroundne colloid) captures

W, (0)—W,(1)
Test-particle Annular slit
p DFT[5] improved DFT  approximation Derjaguin

0.5 —4.32 —4.01 —3.46 -3.35 . S

most of the effects and only misses the intricate effect of the
06  —469 —4.16 —3.50 —2.27 quasi-2D gas. We emphasize again that the insertion proce-
0.7 —470 —3.84 —2.89 0.87 dure is formally exact but we possess only approximate ex-
08 —439 —-3.19 —-1.02 7.79 pressions for the hard sphere density functional whose func-
09 —-3.77 —2.38 3.12 21.64 tional derivative is needed for the insertion procedure to

work. The two variants investigated herein, the Rosenfeld
. ) _and the White Bear functional, are—despite being very

the absolute minimum occurs at a density of 0.73, aCcord'n%recise—not exact. One deficiency, if not the main, lies in

to the annular slit approximation. the bulk direct correlation functions™ of ordern=2: they

are zero outside the hard core according to the functionals,
but from simulations and integral equations we know other-

wise. Requiring test particle consistency has fixed this short-

In this paper, we have analyzed the depletion force becoming forc(), but for all higher-order if>2) correlation
tween hard colloids in a solvent consisting of small hardfunctions one should require consistency fier 1 fixed test-
spheres. We started from an already previously observed digarticles. Part of the problem for=3 is thus the determi-
agreement between simulation data/results from Rosenfeldisation of the density profile with the two colloids fixed.
DFT and the Derjaguin limit. Albeit first derived on purely Therefore, it would be interesting to see how brute force
phenomenological grounds, equilibrium statistical mechanic®FT fares for size ratiose> 10, i.e., whether one could ob-
strongly supports the validity of the Derjaguin limit for large serve the oscillatory packing in the annular wedge directly
size ratiosa between colloids and solvent spheres. The disand how it is related ta(®.
agreement between simulation data/DFT and the Derjaguin Throughout the paper we have argued that the Derjaguin
limit in the depletion zone forr= 10 could be explained by |imit for the depletion force is meaningful. The annular slit

an effective approximation which analyzes the structure ofpproximation, Eq(55), predicts the leading correction to
the solvent between the two colloids in terms offairly) the forcexa Y2, Interesting enough, this is a nonanalytic

dense ?Dhgads olf hard dis.ks. Thﬁ depletioln force nlear &rm but the Derjaguin limit is still reached continuously in
onset of the depletion zorige., where exactly one solvent the variable 14. Since the depletion force is also connected

sphere fits between the collojds mainly determined by the to an integral over the surface densities, B, this consti-

force to cregte a d'.Sk. cavity in the effective 2D gas. Feequ'r'tutes a hint that the density profile also contains nonanalytic
ing the Derjaguin limit fora—«, there are no free param-

eters for the 2D gas. The agreement with simulation data igontnbutmns in 14. I_n fact, yvhereas there are good argu-
very good even at the relatively small size ratie- 10. ments that the density profile around hard convex objects

For higher size ratioa> 10 no simulation data are avail- should have an analytic expansion in terms of the curvatures

able, and existing DFT results showed no convergence td20: Such an analyticity requirement does not hold for pro-
wards the Derjaguin limit. Imposing test-particle consistencyfilés around nonconvex objecdtsuch as the two-colloid con-
we calculated improved DFT results which however did notfiguration in the depletion regionConsequently, there is the
a|ter their |argm behavior_ A|ready forazzo the disagree_ pOSSIbIlIty that for 1&— 0 the surface densities do not reach
ment of the DFT depletion force with the results of the ef-the Derjaguin limit of the surface densities in a planar slit
fective annular slit approximation becomes pronounced, esconfiguration, Eq(38). Possible singular contributions can
pecially in the regionz>0.70—0.80. Also a small, but not be understood with the current theories due to entropic
systematic deviation from linearity as—0 remains in the arguments. A finite difference between the surface density
DFT results for an increasing size ratio We conclude that and its Derjaguin limit would also constitute a surprise since
the limit of reliability of insertion route DFT is reached for it would point to small sphere correlations which are much
a=10. Through the test-particle consistent calculations wdarger than the bulk correlation length and allude to a phase
have shown that insertion route DFT and integral equatioriransition such as solidification between the spheres for
approaches are methodologically equivalent to each othewhich there are no hints. Nevertheless the nonanalyticity of
the single variants differ in their choice for the bridge func- density profiles around curved objects is an extremely inter-
tional. Similar limits for the reliability can therefore be also esting subject in itself which is currently being explored
expected for integral equations. Likewise a similar limit will [21].

V. SUMMARY AND CONCLUSIONS
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FIG. 6. Monte Carlo results for the insertion enefgnd its first two derivativesof an(exclusion disk of radiusy, into a system of hard
disks with diameter 1. The thick black lines are the scaled particle predictions, the broken gray lines are raw data. The disk de@gities are
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APPENDIX A: QUALITY OF SCALED PARTICLE this sectiong=o=1.
THEORY FOR HARD DISKS IN 2D Suppose we have a mixture of two hard species with par-

o i ticle radii R; andR,. Species 2 refers to the colloids and the
To check the reliability of the 2D scaled particle theory mytyal interaction potentials are given by (r). We split
predictions for the insertion energy of a cavity with radiustne density functional describing the mixture into an ideal
Yo WcalYo), we performed Monte Carlo tests for two me- gas and an excess part,
dium densitiesp,4= 0.4 andp,4=0.6. The insertion energy

's given by FUpi(O}=Fd i+ Felip(D}.  (BL)
Wead Yo) =IN Po(Yo), (A1) The hierarchy of direct correlation functions is defined as
where pg(y,) is the probability to find no center of a disk s E
within a circle of radiusyy around an arbitrary point. There- c™ Xy, LX) =— ex (B2
) e (k) (B2

fore we chose for each Monte Carlo move a new, random
point, around which we checked the latter conditi@].
The results, obtained for 4000 disks and roughl§ dves, Specifically forn=1 one can introduce an excess chemical
are depicted in Fig. 6. The MC results are compared tgotential functional,

scaled particle theory, and it is found that its simple predic-
tion pfx:{pi (N} =—cP(x), (B3)

Wead Yo) = TYoP2a+ 27Y0¥2d (A2)  which reduces to the usual excess chemical potential if the
. . . o . densities are constant, | x;{p;(r)=cons}]=u({pi o}).
with Yad !ndependenbf the C"’}V'ty r'adlus is good expept n Suppose we have aln inr{lolmogeneou}s situhti\gr;'?/]{/here one
the vicinity of yo=1/2. At this point, exact analysigl7] colloid is fixed. The depletion potential is then defined as the

demands that the third derivative has a singuldi2], difference between the work needed to put another colloid
3 particle into the system at positionon the one hand and at
M(y 102, Yo (yo—1/2) 2 (a3)  infinity on the other hand. Using the potential distribution
3 0 + 0 . .
Yo theorem[24] we find
This leads to a square-root-like cusp in the second derivative W, ()= lm (u3{x:{pi(NH—u({pid)), (B4
as can be seen in the MC results. Scaled particle theory ig- p2—0

nores this cusp which is not too bad an approximation since

the cusp quickly relaxes to a constant which is the pressuréhere we have assumed that lim..p,1(X) = p1 . Note that

of the disk system. Apart from this effect of the nonanalyt-x5{ - - -] depends in the required limit only on the density
icity of w¢,y, scaled particle theory is sufficiently precise for distributionp,(r) of species 1 around the colloid, i.bgfore

our purposes. the second colloid is inserted. With a given excess functional
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at hand, the depletion potential is found by obtainingr) FUpi(rD = Fd{p(rD}+Fex{pro)
through grand potential minimization,

+ufipd) | Frapn)
0= ———u;+Vi(x) (B5)
Spi(X) _%f d3rf d3r’ci(j2)(r,r’;bulk)
— =In[p1(¥) 1= uSTx:{p1(x"),01]1— 1T ({p1,00}) +U1Ax), X Api(NAp;(r')+F S {pe(r}]. (B12)
(B6)

Doubly occurring indices are summed over. To verify that
the such introduced’-'g( indeed generates the bridge func-
tions, we minimize the grand potential according to EBp)

in the presence of the interparticle potenthl=u;; :

and then inserting this solution into E@4).

Test-particle consistency
br
The depletion po_tential is _the ne_gqtiye p_ote_ntial of mean OF ex = Ipi(r) —Uij(f)+Ci(|§)* Ap(r). (B13)
force between a pair of colloids at infinite dilution. The fol- opi(r) Pio
lowing relation is valid:

Since p; o@ij([r])=pi(|r]) and p;ohi;(Ir[)=Ap;i(|r]) we
W, (|x])==Ingox(|X];{p1,00}) —uza|X]), (B7)  have recovered EqB11) upon the identification

br
whereg,, is the colloid-colloid distribution function in the bij(r)= — (B14)
limit of vanishing colloid density. On the one hand, this dis- Spi(r)

tribution function can be determined via the depletion poten-

tial described in the manner above. On the other hand, thbJp to now everything was exact but in order to specify a

excess functional defines the second-order correlation funcc_losure explicitly we assert that the true bridge functional

tion Ci(;) through Eq.(B2) (for n=2) which in turn can be can be approximated by the bridge functional of a reference

i i ici .
inverted to giveg;; using the Ornstein-Zernike relation: model for which we possess an explicit form Bf,:
Fol{pD=Fel{p)} = 1 “Uproh)

- —c@ = L x6(2) 1
hl](lrl) C|J (|r|) EK pk,OhIk Ck] (|r|)! (BB) XJ' dSrApi(r)_i_Ef dBrJ d3r!

xc@(r,r';bulk) Api(H)Ap;(r').
(B15

A remark is in order here. Note that Eq812) and (B15)
together define a new functional which is now test-particle
consistent, i.e., the inversion of the Ornstein-Zernike relation
In general, both routes will give different results for an ap_gi.ves. the same result as an explicit Qetermination of the dis-
' tribution functions through the density profiles around test

pr01>_<cl)mr§;ektl f()%?ﬁerr;irt%); fggﬁgic;?:rl{t with each other. we proparticles. This consistency holds regardless of the form of the

ceed as follow$19]: Consider the equation which relates the interparticle potential a?”d of how good or bad the choice of
. . o . .~ the reference system is. Of course, the reference system of
bridge functionb;; to the distribution and direct correlation

function choice is again hard spheres described by Rosenfeld’s func-
' tional [9] or a recently improved version, the White Bear
functional[11].
. B . (2) In the limit p,— 0, relevant for the determination of the
bij(Ir)=—Ing;(Ir)) ”ii(|r|)+zk prohik e (1)) depletion potential, the equations for the distribution func-
(B11) tions decouple. Fog,; we have to solve the following equa-
tions (r=|r|):

hi(Ir)=g;;(Ir)—1, (B9)

hik*c‘k?’drl):fd3r'hik<|r’|>c<k?><|r—r'|>. (B10

The various closures of integral equations follow by specify- hyy(r)— 0(121)(r) =p1 1t C(121)(r), (B16)
ing a model for the bridge function, e.d;;(r)=0 for the ’

HNC closure. The bridge function can be generated by a _ _ — * (o(2),ref_ ((2)

bridge functional which we define to be the functional which N 2) = 1) =padhar” (i e
contains all contributions beyond second order in a density +(u"fr;{p1@11(r),0}]
expansion of the exact free-energy functional around fixed, ox ret

constant bulk densities; o= p;(r) — Ap(r): —u1 " ({p100h). (B17)
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FIG. 7. (a) Depletion potential andb) depletion force between two colloids for a solvent densitypef0.8 and a size ratiev= 10:
Comparison between test-particle inconsistent and consistent results, using RoséRféldiad the White BeafWB) functional, respec-
tively.

As expected, the colloids decouple and we are left with the Results for the size ratia= 10 reveal no huge differences
equations for the one-component system. Employing thdetween the test-particle consistent and inconsistent calcula-
White Bear functional, we obtain one-component distribu-tions. For distances between the collor#s0.6—0.7 the con-
tion functions which fit the MC data even better than thesistent results give a somewhat higher force than the incon-
standard Verlet parametrizatid25,26. The input ofh;;, sistent results which adds up to a noticeable upward shift in
c,1 is needed to solve the next two equations dgs (the ~ Wa(z=0). Close toz=0 (contac}, all routes show devia-

normalized density distribution around one colloid tions from linearity which is predicted by the Derjaguin
analysis. The test-particle consistent White Bear result have

hlz(r)—C(lzz)(f)zpl,&n* C(122)(r), (B19) the sm_allest deviation which C(_)uld be expected from previ-

ous articleg11,12 which report improved contact values for

—INgasr) = Ugs1) = py N (2= c)(r) density profiles in the vicinity of hard objects. We note that

’ these deviations from linearity remain as whers increased

+ (" r;{pL@12r),0}] up to 100. Apart from that the differences are minimal, even

exre at higher densities. Fgr; ;=0.8, we show the depletion po-
— 15" p1,00})). (B19)  tential and force in Fig. 7, calculated with the Rosenfeld and

: . : L the White Bear functional.
Having obtainech;;,c;,, the depletion potential is simply  pye to the accuracy in the one-component case, this

given by choice of reference system has been extended to binary soft
B B 2)ref (2 systemg[28]. Again, the agreement with simulation data is
Wo(r)=—Ingay(r) = Uss(r) = py d1* (3"~ e (1) extremely good but the size ratio in the binary systems was
well below 10. Only recently the depletion potential between
+ (51 oL 121, 01— 15" ({p1,001). Y Y oo P

soft colloids in soft fluids has been calculated for size ratios
(B20)  of about 10 using this methdd 3]. In general, test-particle
consistent DFT fares much better than any other theoretical
Comparing the expressions for the depletion potential fomethod compared to the simulation data. Nevertheless, in the
test-particle inconsistent and consistent DFT, E&¢) and  case of hard colloids in a Lennard-Jones fluid discrepancies
(B20), we see that the main difference is buried in the firstto the simulation data occur which show the same footprints
term on the rhs of Eq.(B20) since pi(r)|inconsisent @S the deviations we observe here in the case of hard colloids

~P1,(912(r)|consistent in hard fluids.
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